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vation laws are also related to the exigencies of expres
sing diffraction consistently by Regge poles. 
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I. INTRODUCTION 

THE effects of interactions in the final state on 
inelastic processes have been appreciated for a 

long time.1 For example, such interactions form the basis 
of much of the current experimental search for reso
nances. They also are the foundation of various theo
retical studies, such as the isobar model2 and its 
modifications.3,4 

If there are three or more particles in the final state, 
then several pairs can interact. In many of the theo
retical analyses of production processes the assumption 
has been made that the interaction of only one pair is 
important (e.g., references 2-4)—the remaining final-
state interactions may be inherently weak, or else weak 
in the relevant kinematical regions. (This assumption 
may be justified in certain other cases as well.1) 

There have also been discussions in which several 
pairs were assumed to interact. Some of these discus
sions deal with the regions near the production thresh
old, where the kinetic energies are small, and the final-
state interactions assumed weak.5-8 The solutions then 
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were based, essentially, on a perturbation expansion. 
(This approach was also considered5*8 for the process 
K —> 3w.) Other discussions, in which several interacting 
pairs were considered, relate to the statistical model9 

and to the isoscalar nucleon structure.1011 In these dis
cussions the form of the amplitude was assumed rather 
than derived. As a final example, in which several 
interacting pairs are considered, we mention production 
in the Lee model. For this problem an exact solution 
has been obtained.12 

Tn this paper we examine a very limited problem 
involving overlapping final-state interactions of par
ticles with finite masses. By overlapping final-state 
interactions we mean the two-body interactions of two 
pairs of particles, if the two pairs have one particle in 
common. Thus, for a three-body final state, two inter
actions are overlapping whenever they operate simul
taneously, whereas in the case of four or more particles 
one can have simultaneous interactions of two inde
pendent pairs. 

Our approach is based on integral equations which 
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[translation: Soviet Phys.—JETP 9, 1345; 10, 354 (1959-60); 
and 15, 159 (1962), respectively]. 

7 1 . T. Dyatlov, J. Exptl. Theoret. Phys. (U.S.S.R.) 37, 1330 
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8 N. N. Khuri and S. B. Treiman, Phys. Rev. 119, 1115 (1960). 
9 See e.g., G. Pinski, Nuovo Cimento 24, 719 (1962). 
10 R. Blankenbecler, Phys. Rev. 122, 983 (1961). 
11 R. Blankenbecler and J. Tarski, Phys. Rev. 125, 782 (1962). 
12 R. D. Amado, Phys. Rev. 122, 696 (1961). 
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are analogous to those constructed for the process 
K —> 3w by Khuri and Treiman,8 but our equations are 
considered as defining a model, rather as approximations 
related to a physical process. We assume that two of the 
particles interact with the third but not with each other, 
and we discuss in detail the case where the mass m of the 
third particle is sufficiently large, so that a series expan
sion in powers of m~l may be meaningful. We note that, 
apart from a perturbation expansion, this solution is 
the only one that we can construct. We argue (but 
do not prove) that this expansion should converge 
asymptotically. 

In the limit tri—»<*> our solution has some analogies 
with the production amplitude for the Lee model.12 

However, our interest lies not so much in the precise 
form of higher order corrections, but rather, in remov
ing' the kinematic restrictions of the static case. 

We examine our solution for the case where there are 
two 5 wave resonating pairs in the final state. Our results 
indicate that a Dalitz plot should exhibit the assumed 
resonances, and in addition, that there should be a 
strong resonance in the incoming energy when the two 
final-state resonances intersect in the physical region. 

We should emphasize that this paper was motivated 
not only by the potential experimental interest but we 
also consider this work as an attempt to apply the 
S-matrix approach to production processes. However, 
we were forced to limit our attention to some particular 
aspect of such processes, because of their complexity. 
We chose to examine overlapping final state interac
tions, for the reasons explained in the foregoing. 

In Sec. II we define our model and construct the 
integral equations, for the case of final-state interactions 
in the s wave. In Sec. I l l we obtain the solution as a 
power series in tnr1, and we briefly discuss its asymptotic 
convergence. We consider the physical interpretation of 
this solution in Sec. IV. Some generalizations of our 
model, including interactions in higher partial waves 
and the treatment of anomalous thresholds, are dis
cussed in Sec. V. Finally, Sec. VI contains a few conclud
ing remarks. 

II. DESCRIPTION OF THE MODEL 

We consider the production process illustrated in 
Fig. 1. The center-of-mass energy is s112, where 
s= (q+q')2, and the outgoing particles have four-
momenta qi and masses mit We define for i, j= 1, 2, 3, 

*/«(?<+»)' , (2.1) 

and we have the following relation among these 
invariants: 

Si2+su+szi^s+mi2+m2
2+mz

2
t (2.2) 

^>(_J£~~"— q2 FIG. 1. Production process. 

momentum transfer 
variable. 

In order to keep the problem simple, we shall assume 
that the interaction occurs in a state of total angular 
momentum 7=0 , and that all particles are spinless. 
Since we shall be concerned primarily with the behavior 
at fixed s, the problem is equivalent to that of the decay 
of a particle into three. It may also be a reasonable 
description of the production of three particles near the 
production threshold. 

The condition J=0 has the following consequence. A 
production process which involves five particles de
pends on five kinematical invariants besides the masses. 
From the invariants introduced above we can select 
three independent ones, and the remaining two in
variants must necessarily involve momentum transfers. 
Now, the condition 7 = 0 requires that the production 
amplitude be independent of the two momentum trans
fers. This requires, in turn, that the two incoming 
particles be distinct from the outgoing ones, and that 
there be no three-particle vertex interactions of the 
incoming particles; otherwise we would get poles in the 
momentum transfer variables, as Fig. 2 shows. 

We assume further that there are no antiparticles in 
our model. The particles are therefore analogous to those 
of the Lee model12 but are all relativistic. We shall call 
the incoming particles V, 0 and the outgoing ones N2 

0i, 02, with 0i and 02 identical. We assume that 0 and V 
are distinct from 0 and from the usual V, respectively, 
for reasons stated in the previous paragraph. 

We now relabel some of the invariants: 

s(N61) = aly s(Nd2) = (T2, (2.3a) 

also s(V6) = s, as before. The masses are assumed as 
follows: 

m(V) = m(N) = m, m(8) = m(6) = ii. (2.3b) 

We shall be dealing with the following processes: 

V+B-+N+0+0, (2.4a) 
N+d->N+6. (2.4b) 

The N—6 interaction is assumed known and pure 
s wave. (The 0—0 interaction is ignored.) The ampli
tudes corresponding to (2.4a,b) will be denoted by 
M (s,a 1,0-2) and by T(<r), respectively. We can ignore 
kinematic factors and can put, for 0-^ (tn+fi)2, 

T(cr)~eidMsm5(<r). (2.5) 

The function 5(<r) will be assumed sufficiently smooth, 
bounded at <r= (m+fj,)2, and vanishing sufficiently 
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rapidly at infinity. This last condition is to ensure the 
convergence of all the integrals defined below, and also is 
to make the expansion in powers of mrl in Sec. I l l 
meaningful. Note that the process (2.4a) is coupled to 
the processes V+8-*V+B and N+6+0->N+B+d, but 
these latter processes are not relevant as long as we do 
not discuss the dependence on 5. 

We may now state our problem as follows: to deter

mine, in a suitable dynamical framework, the dependence 
of M on a 1 and a2 in terms of a given function 5(cr). We 
turn, therefore, to a discussion of the dynamical 
framework. 

The dynamics of our model is defined in terms of a 
dispersion relation. (Such an approach has been adopted 
previously.1013) We assume the following representation 
for If: 

M{s,<rh*i) = MM,<rfy 
o-i-o-i" m^'dai' 

(m+M)2 (o-i' — o-i—ie)(ai— en0) + 
(J 2—0*2 

/ , 

[M]„-Ar2' 

(m+/u)
2 (<r2' — <r2 — ie)(<Tz— <r2°) 

(2.6) 

The subtractions are those required for our solution in to [Af]^, comes from the s state of N and 0i, and we 
Sec. III. The bracket denotes the discontinuity in M may write: 
across the cuts in <TI and in <x2. The contributions to the 
cuts are indicated in Fig. 3. In the physical region we 
take for the discontinuity (see, for example, references 
8 and 10) : 

[ M ^ j O x ) ] , 

[ M l . ^ C M ^ u O O l . ^ r ^ e r O M o ^ O , (2.8) 

Afo(5,cn)=— [M&mflddQi. (2.9) 
4* J 

T*( 0 0 ^ M(* . o 'Wo ' (i 7̂  T h e d e f i n i t i o n ( 2- 9) i s v a l i d o n ly i n t h e Physical region, 1 {a^hthlM^auihWh, (2.7) a n d MQ fs d e f i n e d o u t s i d e ^ r e g i o n b y a n a l y t i c 

continuation. The analytic properties of Mo can be 
where Oi is the direction of the outgoing 6l and deter- deduced from Eq. (2.16) below, and have the same 
mines <r2, while 0 / is the direction of the intermediate general properties as partial wave amplitudes for 
6i in the Ni—61 (or N—Oi) center-of-mass system. In scattering.14 

our case T depends only on <xh and not on the angle We now use the fact that 0i and 02 are identical. This 
between Oi and 0 / ; it follows that the only contribution implies 

1 

4TT 

1 r r tf-i-o-i0 

M(s,<rh<T2)^M(s,<Tl
0,a2«)+- / da' T*W)M*(S,<T')\ + 

(T2—ie)((Tf--ar20) 
1. (2.10) 

Equations (2.9) and (2.10) are analogous to Eqs. (21) 
and (24) of Khuri and Treiman8 and, in effect, define our 
model. However, our equations still allow some arbi
trariness in the behavior of solutions near the end point 
(or threshold) a= (m+y,)2. We remove the arbitrariness 
by assuming that Mo(cr) is bounded near this end point. 
If we require, moreover, that near this end point 

7 » - [ > - (m+fxYJ'^K, 

then our assumption implies Mo((r)^K+ (const). These 

considerations can be made precise in terms of the 
Holder condition.15 

(We have suppressed the s dependence. This will 
usually be done from now on.) 

One can interpret the foregoing equations in terms of 
graphs as follows. If one attempts an iterative solution 
starting with Mo(0)(cri)= (const), then the successive 
approximations can be represented by diagrams; a 
typical example is shown in Fig. 4. Such diagrams are of 
two types, with the last interaction taking place in the 
(7i channel or in the cr2 channel. These two channels 
correspond to the two terms of the integrand, respec
tively. (The discussion in references 5-8 also is re
stricted, essentially, to diagrams such as in Fig. 4.) We 
observe that the triangle diagrams, which ordinarily 

FIG. 3. Contributions to the inte
gral representation (2.6). Shading 
indicates the interaction T. 

(a) FIG. 4. A typical dia
gram which occurs in 
the iterative solution of 
Eq. (2.10). 

(b) 

13 F. Zachariasen, Phys. Rev. 121, 1851 (1961). 
14 S. W. McDowell, Phys. Rev. 116, 774 (1959). 
16 N. I. Muskhelishvili, Singular Integral Equations (P. Noord-

hoff N. V., Groningen, Holland, 1953). 
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lead to anomalous thresholds in production amplitudes, 
in this case have an internally unstable mass. The con
tribution of such diagrams is, therefore, superimposed 
on the physical cut and need not be considered 
separately.1617 

One can also obtain Eq. (2.10) from a more formal 
argument. Assume, on the basis of perturbation 
theory,16-17 analyticity in the product of cut 0^ and a2 

planes. The most general function having this property 
and an appropriate behavior at infinity is18 

M(ah<72) = M((nV2 0 )+ (o-i-cT!0) ( > 2 - <r2< 

00 

dxidx2p(xi,X2) 

(xi-<n)(xi—(7i0)(x2-<r2)(x2—<r20) 

+ (<ri-<7i°) 
dxi<p(xi) 

(m+M)2 (%i—<ri)(xi—<ri°) 
•(<T2-<T2°) 

dx2<p(x2) 

(m+ju)2 (X2 — C2) ( ^ 2 — 0-2°) 

• (2.11) 

Since for < 7 2 < ( W + M ) 2 O I the discontinuity (2.8) de
pends only on <n, we must have p = 0 , and the expression 
for the discontinuity leads to the integral equation (2.10). 
The condition p = 0 expresses the fact that there are no 
diagrams which imply a simultaneous dependence on 0-1 
and <T2, such as the four-point single loop diagram. 

Let us return to Eqs. (2.9)-(2.10). We notice that the 
s dependence of the solution of this system comes from 
two sources. Firstly, Eq. (2.9) is explicitly s dependent 
due to the fact that the boundary of the physical region, 
limiting the Oi integration, depends on s if a»i and cr2 are 
taken as kinematic variables instead of <T\ and Qi. 
Secondly, there is the s dependence of the term 
M(s,a1°,(T20). This contributes to the s dependence of 
M(s,cri,0-2) in a rather trivial way, since the term 
MC?,<TI°,O-2

0) is merely a factor of the complete solution. 
Note that we have a homogeneous linear equation, and 
therefore x W l f c ^ i , ^ 2 ) is a solution if M is one. This 
second source of s dependence of M is not relevant to the 
problem at hand, and can be examined only if our 
dynamical framework is extended. 

In order to discuss Eq. (2.9) in more detail, we have 
to specify the direction Oi more precisely. With refer
ence to the process of Fig. 3, we can choose a coordinate 
system19,20 in which the center of mass of N and B\ is at 
rest and in which the polar axis is along the momentum 
of 02. We specify the direction Qi by polar angles 
(«i,<£i); the choice of origin for <j>\ is immaterial. By a 
straightforward application of the conservation laws and 

M•o(<̂ l) = M(<^1
, 

1 r 
LV«°)+-

1T J (m-hu)2 

daf T*(<r')MQ(<T> 'b 

Lorentz transformations, one can show that 

<72=£(<ri)+*?(<7i) cosais=£(<n)+i?(<ri)*i, (2.12a) 

where 

? ( ^ I ) = ^ + M 2 - ( 2 C T 1 ) - 1 ( 5 + ( T 1 - ^ ) ( , + M 2 _ W 2 ) > ( 2 < 1 2b) 

rj(a1) = (2cr1)-1{[(^-cr1-M
2)2-4(r1M2] 

X [ ( ( T I - W 2 - M 2 ) 2 - 4 W V ] } 1 / 2 . (2.12c) 
We now write 

1 
Afo(<ri) = — / <fiW((n;Gi) 

AT J 
1 r+l r2 

=— / <fci / 
4TTJ_I JO 

&t>iM(<rh<r2). (2.13) 

The integration over <t>\ at fixed xi represents an integral 
over one of the momentum transfers, of which M has 
been assumed independent, and hence gives just 2x. The 
Xi integration can be transformed to give 

where 

Mo(<71) = C277(<ri)]-1/ J I4W 2 y<r 2 , (2.14) 

£±=$(<ri)±il(ffO. (2.15) 

The Jacobian (2r7)-1 is independent of <r2. Note that 
the boundary conditions on a2 are the conditions for the 
three final-state momenta to be collinear ( c o s a i = ± l ) . 

We now insert (2.10) into (2.14) and obtain a linear 
integral equation for M0: 

1 r L + 
((T2 — O'20)d<T2 

(</-fl^-ie)(</-<ri°) 2rj JL_ (af-a2~ie)(*'-a2°) J- (2.16) 

where we have interchanged orders of integration. This 
can be justified easily if 0-1 is considered a complex 

18 L. F. Cook, Jr., and J. Tarski, J. Math. Phys. 3, 1 (1962)' 
especially Appendix A. 

17 G. Barton and C. Kacser, Nuovo Cimento 21, 593 (1961). 
18 See, for instance, A. S. Wightman, in Relations de dispersion 

et partictdes de'Tnentaires, edited by C. De Witt and R. Omnes 
(Hermann et Cie, Paris, 1961), pp. 281 ff. 

w G. C. Wick, Ann. Phys. (N. Y.) 18, 65 (1962). 
20 L. F. Cook, Jr., and B. W. Lee, Phys. Rev. 127, 283 (1962). 

variable. We recall also that T(<r') is assumed to vanish 
at infinity sufficiently rapidly. The second term in the 
brackets gives 

1 /<rf — L+—ie\ 1 
U . (2.17) 

f((7i) \<T'-L_-ie/ a'-a? 

f(r' — L+—ie\ 
Ini 

Equation (2.16) is a singular integral equation. How-
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ever, the theory as expounded by Muskhelishvili15 can
not be applied immediately, since the kernel (2.17) has 
singularities but is not a Cauchy kernel. We shall 
comment briefly on Eq. (2.16) at the end of the next 
section. 

III. SOLUTION IN THE CASE OF LARGE m 

positive quantities which satisfy 

<n=(w+a) 2 , <r2=(w+/3)2, (3.1a,b) 

s=(tn+a>)\ (3.1c) 

In the static limit, a, 0, a? are the total energies of the 
particles 6h 02, 0, respectively. The new variable of 
integration will be 7', where 

0-'= (m+y')\ (3.1d) We now study our equations for the case of large w, 
by constructing the solution as a power series in tnr1. 
The lowest approximation, which corresponds to the * n t h i s section we shall use the quantities a, etc., as 
static limit ( « - > co), is particularly simple; this is, of arguments of the various functions previously intro-

course, expected from the Lee model.*2 The next duce<*T> ™*, t h e n a t f a l n o t a d o n Jia) = Tl(m+a)^ 
\ , , T 1 i_ -^ j etc. We shall require the expansion of £ and -n for large m: 

approximation, of order m~ , can also be written down n ° 
quite simply, while that of order m~2 is already much £= (tn+a)—a)2+0(w-1), (3.2a) 
more involved. We shall conclude this section with a ^ = 2 ^ ( a ) [ l + ( 2 m ) - 1 ( c o - 2 a ) ] + 0 ( m - 2 ) , (3.2b) 
brief discussion of a few mathematical details, which where 
include the question of convergence. 

To study the equations for large w, we introduce new K W = {(a2-M2)C(w-a)2-M2]}1 / 2 . (3.2c) 
variables in place of ah etc., since the latter approach Elementary calculations show that, for large m, Eq. 
infinity with m. W7e therefore define a, /3, and co as the (2.10) reduces to 

M ( a , « = I W ) + - f dyfT*(y')M0(y')\— ° . " , n • + — 
TTJ^ L(y—a—ie){y—a°) (7' 

+0(m~2). (3.3) 

We next want to project the s wave out of this equation. However, in the static limit the physical region lies on 
the line 

and the transformation f JOi —+ fdfi, which we used previously, becomes singular. We therefore proceed by 
calculating M as a function of a and x\ [cf. Eqs. (2.12)]. We expand in powers of T?#I/£, which is of order tnr1, and 
obtain 

K(cP)xi° rdy'T*(y')M0(y') 
M(a;xi) = M(a0'yXi°) • 

mw J fi (y'-co+a0)2 

<*yr*(y) j i f 0 (y) 
1 1 

(7'—a — ie){yf—a?) (y,—Cjo+a — i€)(yf—Q)+a°) 

K(a)xi rdy'T*(yf)M,(y') 

tnw J a (yf—co+a—ie)2 
+0(tn-2). (3.4) 

Let us now construct the solution of this equation. The first two terms combine to give M(a°;0) (e.g., set 
a=a° and # i=0) . The s wave is given by 

1 /•+! 
Afo(a) = - / M(a\ 

2 7_! 
X\)dxi 

= Afo(o°)- dy' T*(y')M0(y ,r ! 
L(y'-a-ie)(yf-a°] 

1 

i ) (y~a°) ( y - c o + a - * € ) ( y + « - a ° ) J 
+0(w~2), (3.5) 

where we have set a well-defined meaning in the static limit, and therefore 
I J V ft ,A - # , n should be the limit of M(a°^°) for 0°=co-a°. This, in 
M(a°; 0) = M o M . t u n i j c o r r e s p 0 n d s to x^O, 

This equality is, in fact, implied by our procedure, and Equation (3.5) can be easily solved1216-21 in the static 
has a natural interpretation. The amplitude M0(oP) has 21 S e e a l s o R 0mnhS) N u o y o c i m e n t o 18? 3 1 6 ( 1 9 5 8 ) 
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limit m —> °o. (See also below.) We have 

M0(a) = Ce*<«>+A<"-«>, 

forms 

(3.6) 
M (a,0) = CeA <*>+A (w~a) = CeA W+A <•-*> 

where 

C=MQ(oP)e-A^^\ 

Let us now consider the complete amplitude to order 
(3 7a) m~1' Equations (3.3) and (3.4) yield expressions of the 

A(. 

P(< 

a-a0 r Kr)dy 
a) = 

7T J* (yf-a-ie)(y,-a0) 

= p(a)+i5(a) ; 

a - a 0 r00 &(y')dy' 
TT i M ( y - a ) ( y - « ° ) 

form 

M(a,f3) = M(a^)+F(a,a«)+F(j3,P«) 

M(a; ^i) = Mo(« 0 )+F(a,a°)+i ? , (w-a, w»a°) 

(3.8) 

(3.7b) 

(3.7c) 

+mr1K(a)x1F'(o>-a)+0(tn-2) 
= = C e A ( a ) + A ( w - a ) + w - i ^ ( Q : ) a . l F / ( a ) „ a ) 

+0(m~ 2 ) , (3.9) 

where F'(a) is the derivative of F(a,a°) with respect to 
a, which is independent of a0. We see that to order m - 1 , 
only the s and the £ wave contribute to M. 

To obtain the next approximation we first have to 
calculate M(a; xi) to order wr2. Then we can project the 
s wave, and the rest of the problem is as before. We 

and that Eq. (3.6) can be written in the equivalent indicate a few more steps. We obtain 

Note also that in the static limit 

M(a,0) = Mo(a) = MQ(i3), 

Mo(«) = M 0 ( a ° ) + ^ - ^ [ dy'THyf)M0(y
f) 

IT J ^ 

X 
1 1 R 

L(y'—a—i€)(yf—a°) (y'—a>+a—ie)(y' — (*)+a0) m2J 
+0(m~ 3 ) , (3.10) 

The function R can be calculated by straightforward 
kinematics, but the arithmetic becomes tedious. Wre 
next write 

where 
M 0(a) = M0

(0) (a)+m~2M 0
(2) (a)+0(mrz)J 

We substitute into Eq. (3.10) and neglect the term 
m~4RMoi2)(a). The result is an inhomogeneous equation 
for Mo(2), which can be solved by standard methods15,21 

(provided the function R is sufficiently smooth). We can 

select that solution which is proportional to C, since any 
remaining part of the solution could be absorbed by 
redefining C. We may add that, even if the function R 
should have a simple form in some limiting cases, the 
functional form of Mo(2) would still be far from simple. 

Let us now consider a few mathematical details. First, 
the expansion in powers of m~l leading to Eq. (3.4) is 
clearly valid for complex a, but the limit Ima—»0 
requires some care. One simple way to study this limit 
is to differentiate in the equation ((u—ie)~l = irib(u) 
+P/u. We obtain the following relation: 

f(x)dx 

a (x—y—ie)2 
-7rif(y)+\im\(r\[ ) -

f(x)dx 2f(y)' 

-y)2 
V J 

(3.11) 

Hence as Imy —> 0, the expression (x—y—ie)~2 becomes 
symbolic for a distribution. This type of argument 
clearly applies as well to higher powers, i.e., to 
(x—y—ie)~n. 

Second, we note some symmetry properties: 

M0(a*) = lfo(a)*, (3.12a) 

M0
(0)(a) = M0

(0)(a>-a*). (3.12b) 

The first of these follows from Eqs. (2.9)-(2.10). I t re
lates MQ in the two half-planes when the cuts overlap 
[cf. Eq. (2.16)J. This symmetry also applies to Jfo(0), 
as defined by Eq. (3.5). In this latter equation we may 

separate the cuts slightly, or else we may assume that 
¥0

(0)(w,a°) is analytic in a>, and continue from the 
region12 o><2^. Next, Eq. (3.12b) tells how the ie's for 
a0 and for a>—a0 are related. This equation is obviously 
valid if co < 2/i and if a0 is away from the cut. 

Our third remark has to do with the behavior near 
the end points of integration. We consider only the 
solution Mo (0)(a). This clearly has the asymptotic 
behavior which is implicit in the dispersion relation. I t 
is also not difficult to verify that our condition for 
<TI= ( W + M ) 2 , or for a=M> is fulfilled. We note that if we 
were to abandon our condition for a=/z, then we could 
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write16,21 

MQ(a) = ( + )«*<«: )+A(cu-a) 

with two arbitrary parameters instead of one. (Stronger 
singularities at a=fx would lead to divergence.) Without 
our condition at a=y we could also have nonsubtracted 
dispersion relations. 

Finally, we come to the question of the convergence 
of the series solution for M0(a). We do not expect point-
wise convergence, for the following reason: Given s, 
or OJ, the exact solution is singular at those values of 
<j\ for which L± (s,(Ti)— (m-f/i)2, while the corresponding 
singularity in the approximate solutions occurs at 
a~oo~n. However, the position of the former singu
larities approaches the position of the latter as 
m—> Qo, and one may hope that the series converges 
asymptotically : 
lim w"[M 0

( 0 ) («)+- * • + M o U ) ( a ) - M 0 ( a ) ] = 0. (3.13) 
m—*co 

We have already mentioned that the general theory15 

does not apply to Eq. (2.16), and we are not certain 
about properties of the exact solution such as existence, 
uniqueness, continuity, or dependence on parameters. 
However, let us suppose that T(a) is analytic in a 
neighborhood of the arc M <a < <*>. Then the assumption 
of an analytic solution Mo(a) is consistent with the 
elementary facts about analytic properties of integrals. 
[For example, reference 16, Sec. 3(A).l I t might be 
unnecessary to assume analytic T(a)y but the higher 
order approximations require higher derivatives of T, 
as Eq. (3.11) shows. 

If we make suitable assumptions on the functions 
T(a) and Mo (a), etc., then it can be shown that the 
neglected terms, which are formally of order w~n~J, are 
indeed small. The relation (3.13) follows. Note that the 
complex singularities14 of Mo can be ignored, since they 
are displaced toward the real axis as m increases. 

IV. DISCUSSION OF THE SOLUTION 

We now wish to discuss the physical meaning of the 
results of the previous section. We recall that our 
investigation was aimed at the following question: 
What is the structure of the amplitude when two final-
state interactions are simultaneously present? Let us 
suppose that, if only one of these two interactions should 
be present, then the amplitude would be characterized 
by eA(cr)=i_|_ a^ j n t n e c a s e 0f t w o simultaneous 

interactions, the simplest functions which might de
scribe the effect are5"11 

l+a(<ri)+a(<72) and [ l+f l (cr i ) ] [ l+a((r 2 ) ] . (4.1a,b) 

FIG. 5. Example of independent final-
state interactions. (M 

) * 2 

If the interaction is sufficiently weak, then the two 
expressions do not differ greatly, and the first is more 
convenient. The second expression clearly applies if the 
two interactions are independent. For example, consider 
the production process shown in Fig. 5, with the final-
state interactions related to the energies v\ and v2 as 
indicated. Then we may write 

. — ° ' « Tl*(v^)Mlll2{v^v2)dvJ 

= (!<-+2) 
TT Jvo (v\ — (v1'-v1-ie)(v1'-vl

Q) 

and the solution is CeAlM+AzM. 
Let us now return to our model. We will examine our 

solution from the following point of view. Let us suppose 
that the scattering amplitude T(a) exhibits a strong 
and narrow resonance centered at <s — v\ how does this 
affect Ml If we consider, e.g., the region where a ^ a 
but a2 is away from #, then the two expressions (4.1a,b) 
are both approximated by l+a(o-i). This is also ex
pected for our model, since then only one of the two 
terms in Eq. (2.10) is large. But the interesting case 
(r1^(72~# has to be examined more carefully. 

Our representation for M is in the form [see (3.8)] 
of a sum 

M(5,tri/r2) = M ( * , < r ^ (4.2) 

where by construction F(^,<JI,CTI0) is large near <j\=d. 
However, near the static limit, Eq. (3.9) shows that 

M M ) = JCM(a;^)+M(/3;^)] 
= G(a,a0)+G(/?,^o)+0(w-1); (4.3a) 

G(a,ao) = | C ( c o , a 0 ) ^ ( a ) + A ( " - a ) . (4.3b) 

The factor eA(a) is large near a = a (corresponding to a). 
The factor eA{oi~a) is large near 13=a, since, for large m, 
we have a-\-fi^o^ in the physical region. Now, this latter 
factor can be interpreted as enhancement of the inter
action for those values of <rh or of a, which kinematically 
allow the resonance in the o-2-channel. We may think 
of this enhancement as a pseudoresonance in ah or, as 
a reflection of the resonance in <J<L. 

When the point a=P=a lies outside the physical 
region, e.g., in the case co = «i in Fig. 6, the resonance 

a«ff 

FIG. 6. Regions of en
hancement of M for large m. 
The dashed lines represent 
the pseudoresonances. 
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and the pseudoresonance cannot be large simul
taneously. In such a case each of the terms G(a,a°) and 
<3(j8,/3°) contributes to the enhancement at a=a and also 
at p=a} and these two contributions are added. How
ever, as o) increases to w2, then the resonance and the 
pseudoresonance overlap, and we have two contribu
tions to each G which are multiplied. We emphasize that 
this effect is brought about by a variation in to, and is 
not of the form (4.1b). [One has to assume here that 
neither the subtraction constant a0 nor a>—a0 is near a, 
and that Mo(cx),a°) varies slowly with co in the region in 
question. See Eq. (3.7a).] 

I t is instructive to look more closely at the structure 
of this pseudoresonance. Let us first consider the case 
when the width of the resonance is not small compared 
with tnr1, but m is large. The width of the phase space 
in the (afi) plane is of order m~l. Then those parts of the 
physical region where | e A ( / 3 ) | » l , and |eA(c*~Q!)|»l are 
largely overlapping, and the two functions eA(/3) and 
eMa>-ct) d e s c r jbe roughly the same effect, even though 
one depends only on 0, and the other, only on a. 

The connection between the two terms can be seen 
more clearly by examining the correction of order mrl to 
the amplitude M(a; xi) [Eq. (3.9)]: 

The second term, when A has a resonance at co—a, has 
the effect of shifting the position of the peak, the shift 
being in opposite directions for # i > 0 and for x\<0 
(i.e., for /3>o)—a and for #<co—a, respectively). In 
other words, it tends to rotate the pseudoresonance 
towards a line of constant /?. This must obviously be the 
case, since the correction considered is the second term 
in the expansion 

Fi^^^F^-a^-a^+m-'Kx^^-^+Oim--2). 

For a narrow resonance, as, e.g., in Fig. 6, one must 
take enough terms in the expansion to effectively rotate 
the pseudoresonance. One should keep in mind, how
ever, that our solution is expected to converge asymp
totically only, and, therefore, may not be reliable with 
respect to fine details. 

We next exchange the independent variables (^i,cr2) to 
(o"i,#i), and project out the partial wave Mi(ai), in 
order to obtain an equation for this function. The treat
ment of the first term in the braces requires some care, 
as follows: 

Plxl(«\a^Pl\^—ryPl^ - J 

= Pi(oiXi+bi). (5.3) 

The resonance and pseudoresonance are completely 
identical in the static limit. This is a reflection of the 
fact that in this limit both pairs can be in pure s states 
simultaneously. The infinite mass of the common 
particle of the two pairs serves to decouple their motion 
completely, so that the interactions behave as if they 
were nonoverlapping. 

Let us summarize. In the case of large m, the pseudo-
resonance does not cause enhancement of any part of the 
phase-space region (for fixed co) which cannot already 
be enhanced by the direct resonance in a or f$. However, 
the pseudoresonance does correlate the dependence on 
a and 0 with that on co. Therefore, it describes the 
formation of isobars in three-body final states, and it 
indicates a possible strong energy dependence of their 
excitation probability. This qualitative result may be 
valid outside the rather restrictive model assumed here. 

WTe remark that models for such higher isobars have 
also been constructed in the framework of strong cou
pling physics.22 

V. SOME GENERALIZATIONS 

In constructing our model wre have made a number of 
simplifying assumptions. However, this model can be 
generalized in some respects without altering its basic 
structure, and we now give a few examples. 

A. Interactions in Other Partial Waves 

Let us consider the case where the final-state inter
actions are in a partial wave with angular momentum 
ZT^O. Much of the discussion of Sec. II can be easily 
adapted to this problem. In place of Eqs. (2.8)-(2.9) 
we now have 

1X1.,= Tl^(a1)Ml(a1)Pl(x1)J (5.1a) 

21+1 r+l 

Mi(<n) = / Pl{xl)M{al)x1)dxh (5.1b) 
2 y_x 

where #i(<ri,o-2) is given by Eq. (2.12a), and in place of 
Eq. (2.10) we have 

f Pi[>i (<r>2)] (cr i - <ri°) P£x2 (*!,</)] (o-2 ~ cr2°) 1 
1 L ( 5 # 2 ) 

I (<Tf-(Xi-ie)(a,-(T1
0) (a'-a2-ie)(<T'-a2o) J 

We used the notation {(<r1) = fi and j-(a') = l;,
J and did 

the same for the function r\. The projection of MI(<TI) 
can now be carried out. This first term yields the integral 

21+1 f+l 

/ Pi{xi)Pt(aiXi+bi)dxi^ ail. 
2 J_i 

We hope now, as in Sec. II, that the equation for Mi(cr\) 
22 E.g., C. J. Goebel, Phys. Rev. 109, 1846 (1958). 

1 r™ 

7T J (m+u)2 
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has a well-behaved solution. The other partial waves, 
and the complete amplitude, are determined by Mi. 

The expansion in powers of mr1, however, cannot be 
obtained as easily as in Sec. I I I . This was to be expected, 
since in the static limit the cosine %\ is no longer deter
mined by the invariant energies. An attempt to con
struct such a series solution leads to the following 
complication, among others. For / = 1, e.g., and for large 
m we have the order-of-magnitude relation Mo (a) 
~ w M i ( a ) (cf. Sec. I I I ) . Therefore, we cannot compute 
Mi (a) in the static limit as the first step of the solution. 

B. Anomalous Thresholds 

Vertex singularities frequently arise in production 
amplitudes16 and give rise to what are known as 
anomalous thresholds. We shall therefore describe one 
modification of our model, one which gives rise to 
vertex singularities, but in which these can be easily 
taken into account. Let us admit into our model 
V particles12 in addition to V, d, N, and 0, and let us 
consider again the process V+d—> N+d+6. Then the 
representation (2.10) has to be modified by including 

The contour16 T(s) has as its end points the vertex 
singularity and (m+n)2, and £(a') is one-half of the 
usual discontinuity function23 (since we have contribu
tions from positive energies only). Note that T(a') is 
now needed in an unphysical region. 

The anomalous threshold terms and the pole (Born) 
terms together form the inhomogeneous part of the 
equation. This equation can be investigated by the same 
methods as we used before. 

We again assume a well-behaved solution M0(<TI). 
The general solution is then the sum of a particular 
solution of the inhomogeneous equation and of the 
general solution of the homogeneous equation. Let us 
select for the particular solution the one which is 
proportional to gf(s). The two parts of the solution can 
now be interpreted as the sums of those diagrams which 

and a similar equation for M[2]0. We have assumed 
equal masses, M, for di and for 02. 

The two functions M[i]0 and M[2]o satisfy the sym
metry relation 

M [ 1 ] 0 ( a ) = M [ 2 ] o ( w - a * ) . (5.6) 
23 R. E. Cutkosky, J. Math. Phys. 1, 429 (1960). 

FIG. 7. Diagrams ' * ' 
involving the V par-

(b) 

the contribution of one-particle poles and of the cuts 
associated with the anomalous thresholds. These con
tributions are illustrated in Fig. 7. We assume that the 
diagram of Fig. 7(b) is the only diagram which yields 
anomalous thresholds. 

To construct the representation for M we have to 
introduce the amplitude f(s) for the interaction 
V+$—>V+d (assumed s wave), and the coupling 
constant g for the vertex 7<-* N+6. We take the mass 
of the V particle to be m also. The following representa
tion results: 

r - T*W)M,W)d<jf 1 

J\m+fi)
2 ((rf-a1-ie)((rf-(rl

0)\ 

contain an intermediate V particle, and of those which 
do not contain one, respectively. 

C. Distinct Interacting Pairs 

Our solution can be applied to the case where the two 
particles 0i and 62 are not identical. Let their (s wave) 
interactions with N be described by the respective 
functions 

T[1](a1) = ei8^sm8l(a1)y 

r[2]((T2) = el'52(ff2)sin52((72). 

The construction of the dynamical equations proceeds 
as before, but we have to deal with two s waves M[ij 0(0*1) 
and Af [2] 0(0*2). (We have, in fact, two distinct partial-
wave expansions.) For the static limit we obtain 

We can now eliminate M[2]o from Eq. (5.5), and the 
resulting equation yields 

Mmo(a)==CeA^^+A^—«>. (5.7) 

This solution can be used as the lowest order term in an 

M (*!,**) = M (*£,*£)+{ gf(s)( V 
I W i — m 2 <Ti°—m2/ 

gf(s)(cri-^) T*(<j')£(<Tf)d<r' 

T(s) (o- /-C7i-i€)((r'--(7i0) 

M[i]0(flO = Af(o°, 00 — a0)-
1 — a 0 

dy'\ 
r t i ]*(T 'Mi]o(7 ' ) rM*(V)JfMo(7') 

.(yf—OL — ie){yf — oP) (yf — co+a — ie)(y'—w+a°) ) 
(5.5) 
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expansion in powers of nr1. The remainder of the solu
tion can be carried out as in Sec. III. 

It is obvious that the generalizations A-C can be 
combined in various ways. One can easily construct 
further examples, where, e.g., final-state interactions 
take place in more than one partial wave, or where the 
particles have spin, or where the total angular momen
tum / is different from zero (but has a definite value). 
In this latter case the amplitude depends on the 
momentum transfers, but this dependence is known. 
See, for instance, reference 11 for / = 1 . 

VI. CONCLUSION 

Let us try to consider what is the value of our model. 
This model can be looked at from three points of view: 
as a model field theory, as a qualitative description of 
overlapping resonances, and as a basis for approximate 
calculations of realistic production amplitudes. We shall 
consider these aspects in turn. 

With regard to model theories, our model and its 
solution are very similar to the Lee model, if production 
is considered. However, our model admits three 
independent kinematical variables, and this is a basic 
extension from the two variables in the Lee model. We 
have compared the static and the nonstatic cases else
where in the paper. 

With regard to overlapping resonances we may say 
this: Our model enables us to make here some qualita
tive conclusions, which may be valid independently of 
the exact details of the interaction. The conclusions 
have been described fully in Sec. IV. These conclusions 
could also be conjectured on the basis of a static model, 
but it is not altogether satisfactory to generalize when 

a larger number of variables enters into the problem. 
Of course, our model also can be applied to nonover-
lapping resonances, but then we merely reproduce the 
isobar model. 

With regard to realistic production amplitudes, we 
have seen how our model can be adapted to various 
kinds of particles in the final state. However, two of the 
simplifications in this model seem particularly difficult 
to improve upon: the neglect of diagrams such as the 
single-loop diagram with four external lines, and the 
restriction to a definite total angular momentum / . The 
diagrams just described are known to have singularities 
near the physical region,24,25 and may therefore be 
difficult to incorporate into a model such as ours. In 
connection with the total angular momentum, we have 
already noted that the approximation / = 0 may be valid 
near the production threshold. But for large kinetic 
energies the momentum transfer dependence of the 
process becomes crucial, and our model is clearly 
inadequate. 
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